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Talk outline

1. Approaches to photon detection

2. Motivation: axion dark matter

3. Qubits and quantum nondemolition

4. Proposed work (2018 DOE ECA)

This is very interdisciplinary work. Links/references are included where
possible in the event you want more depth.
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Start with (probably familiar) PMTs

https://commons.wikimedia.org/wiki/File:

PhotoMultiplierTubeAndScintillator.svg
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PMTs for Super-Kamiokande

http://www-sk.icrr.u-tokyo.ac.jp/sk/gallery/index-e.html
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PMT wavelengths are in the hundreds of nm.

B. Dolgoshein et al., NIM-A 563 (2006) 368-376.
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Silicon Photomultipliers (SiPMs)

I Robust against B-fields
I Timing resolution ∼10s of ps
I ∼10s of kHz dark rate
I c.f. CMS HCAL upgrades,

http://cds.cern.ch/record/1481837/

files/CMS-TDR-010.pdf

Low-flux spectrum,
n̄ = 12.93. (This type of
spectrum will come up
again.)
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Microwave Kinetic Inductance Detectors (MKIDs)

I https://www.nature.com/
articles/nature02037

I “High”-Q superconducting
resonator

I Incident photons generate
quasiparticles, change surface
impedance

I Look for phase shift in
resonator

I Demonstrated for keV x-rays
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Transition edge sensors

http://web.mit.edu/

figueroagroup/ucal/ucal_

tes/

I Near the superconducting
gap, dRs/dT is quite large.

I ∼ mK transition widths
I Near-IR detection efficiency
∼95%:
https://ws680.nist.gov/
publication/get_pdf.cfm?
pub_id=32855
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Skipper CCD

Javier Tiffenberg, 2018 DOE ECA

arxiv.org/pdf/1706.00028.pdf

I Multiple measurements
of each pixel’s charge

I Error prob. ∼ 10−13

I 10 µs/pix/amp
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A quantum mechanics interlude

Lita et al., 2008,
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=32855

Q: Why should we expect a photon spectrum that looks like this?
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A: This is a feature of coherent photon states.

Coherent states are not eigenstates of the Hamiltonian. Consider
eigenstate of a:

a|α〉 = α|α〉
|α〉 =

∑
n

|n〉〈n|α〉

a|α〉 =
∑
n

αcn|n〉

We can write a coherent state as a superposition of Fock states |n〉:

|α〉 = e−|α|
2/2
∑
n

αn

√
n!
|n〉.

|α〉 can be interpreted as the amplitude of n photons in a coherent state.
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A: This is a feature of coherent photon states.

|α〉 = e−|α|
2/2
∑
n

αn

√
n!
|n〉.

So what is the probability of finding n photons in your state?

Pn = e−|α|
2 |α|2n

n!

and this is a Poissonian distribution.
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Editorial Interlude

I All these devices exploit important physical principles
that cannot be described without quantum
mechanics.

I (Does this make them quantum sensors? What is a
quantum sensor?)

I These devices address photon energies > 1 eV. What
if we need to go lower?

I It turns out we do need to go lower to look for. . .
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Axion dark matter
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There’s good evidence that baryonic matter is
only 5% of the matter in our universe.

1. Velocity distributions of
galaxies and clusters are
unexpected.

2. Anomalous gravitational
lensing.

3. There’s too much mass in
galactic clusters.

M. Hotz, PhD Thesis, U. Washington, Seattle, 2013.
https://arxiv.org/pdf/0803.0586.pdf

http://pdg.lbl.gov/2006/reviews/darkmatrpp.pdf

http://bustard.phys.nd.edu/Phys171/lectures/dm.html
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The “Strong CP Problem” of QCD in one slide:

I Non-Abelian nature of QCD gauge transformations
→ infinite, degenerate potential energy minima
(vacua) |n〉!

I Continuous transformations |n〉 → |n + q〉 are not
possible, but tunneling is allowed.

I |θ〉 =
∑

eınθ|n〉 for 0 ≤ θ ≤ 2π.

I QCD Lagrangian gets a term Lθ = θ g2
s

32π2G
µνaG̃ a

µν
that violates CP symmetry.

I θ̄ = θ + arg detM is measurable, nonzero, and
small: θ̄ < 10−10.

I The strong CP problem: Why does θ̄ “just
happen” to be so small?
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The axion is a proposed solution to the strong CP
problem.

I Peccei & Quinn, Phys. Rev. Lett 38, 1440, 1977.
I Spontaneously broken symmetry → new boson
I Axion field “tilts” the degenerate QCD vacuum,

resulting in a CP-conserving minimum.
I Primordial universe cools below some threshold, PQ

symmetry is broken. Resultant particles are “light
dark matter”.
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QCD axions: well-motivated, but the mass is not
well-constrained

ADMX 500 MHz - 1 GHz
“haloscope”

I Laγγ = gaγγE · B
I Paγγ = g 2

aγγ
ρ0
ma
B2

0VCnm`QL ∼ 10−23 W
I SN1987A give us an upper limit ma ∼ 250 GHz. . .
I µeV < ma < meV.
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How to detect axions?

Maxwell’s equations (theorist units):

∇× B− ∂E

∂t
= JEM

∇ · E = ρEM

∇× E = −∂B

∂t
∇ · B = 0

Axions represent an extra source term in Maxwell’s equations:

∇× B− ∂E

∂t
= g

(
E×∇a− B

∂a

∂t

)
+ JEM

∇ · E = ρEM + gB · ∇a

http://arxiv.org/pdf/1310.8545.pdf
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How do you detect axions?

∇× B− ∂E

∂t
= g

(
E×∇a− B

∂a

∂t

)
+ JEM

∇ · E = ρEM + gB · ∇a

In the presence of a strong magnetic field B0, axions give us an exotic

current density Ja = −gB0ȧ. Then we have a detection strategy:

1. Use a multi-Tesla B-field to convert axions into
virtual photons.

2. Use a resonator to accumulate/detect the faint
signal (< 10−21 W) from photons.

3. Make the cavity tunable.
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a→ γ signal power

Psig ≈ 3× 10−25 W ×
(

ρa

0.3 GeV/cm3

)(
f

10 GHz

)
×
(

B

14 T

)2( V

0.23 L

)(
Cnm`

0.4

)(
Q

104

)
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Resonant axion detection: an analogy

Accelerators use RF cavities to impart energy to particle beams. This is
just the inverse problem: using RF cavities to extract energy from weak

sources.
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The Axion Dark Matter eXperiment (ADMX)

http://depts.washington.edu/

admx/index.shtml
http://www.pnas.org/content/

112/40/12278.full.pdf
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Problem: µeV < ma < meV

This is why the ADMX cavity is tunable. Qa ≈ 106. Recall

Q =
ω0

δω

and the signal power Pa ∼ Q.

I The axion mass must fall within the ADMX cavity
bandwidth or we’ll miss it! (And the cavity
bandwidth can’t be too low or we’ll lose signal
power.)

I We tune the cavity like a radio dial to “receive” the
axion signal.
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This is a major design challenge.

I How can you mechanically tune a large resonator
over a wide frequency range without destroying the
Q?

I Magnets are expensive. At higher frequencies, we
need to pack more cavities into the same volume.
Tuning problems compound. (“Swiss watch
problem”).

I Physics & EE challenges associated with detecting
and amplifying a < 10−23 W signal.

25 Daniel Bowring — Quantum Sensors



ADMX is the only axion search with
DFSZ-compatible “discovery potential”.

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.120.151301
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To sum up:

I Axion searches require sub-eV photon detection.
I Axion signal is low-power, and noise is a concern.
I The next few slides will explain why we can’t just

scale the current experiment. We need a new kind of
detector.
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Let’s pause to check in.

28 Daniel Bowring — Quantum Sensors



Lower noise limit of one photon per resolved
mode.

From Clerk et al., https://arxiv.org/abs/0810.4729:

I Apply a gain G to a bosonic input mode a:
b =
√
Ga + F , for added noise F .

I [b, b†] = G [a, a†] + [F , F †]
I Apply the generalized uncertainty principle:

(∆b)2 ≥ G (∆a)2 + 1
2 |G − 1|

I In the large-gain limit,

(∆b)2

G
≥ (∆a)2 +

1

2
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Linear amplifiers suffer from irreducible QM noise.

I Standard Quantum Limit (SQL): one photon per
resolved mode

I Expressed as a rate:

dNSQL

dt
= 1×∆f =

2f

Qa

I The axion width means Qa ∼ 106.
I This is just a consequence of the Heisenberg

uncertainty principle.
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“Squeezed states” can help solve this problem.
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Quantum nondemolition
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SQL

qubit error background, pmerr = 0.01

QND noise, 30 mK

QND noise, 100 mK

QND noise, 2 K

DFSZ signal rate, B0=14 T

I We can circumvent the SQL using a technique called
quantum nondemolition.

I If we are successful, the dominant noise source will
be the system’s blackbody photons.
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Stark Effect in quantum mechanics

Hydrogen atom perturbed by an electric field ~E = Eẑ :

H =
p2

2me
− e2

4πεr
+ e|~E |z .

Solve using perturbation theory to find

∆E = −1

2
α|~E |2

where

α = 2e2
∑ |〈n`m|z |n′`′m〉|2

En′`′m′ − En`m
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The consequence of this is a field-dependent
level-splitting.

M. Courtney, commons.wikimedia.org/wiki/File:Hfspec1.jpg
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Similar problem: two-level “atom” weakly coupled
to a harmonic oscillator

H = ~ωr (a†a + 1/2) + ~ωqσz/2 +
~g2

∆
(a†a + 1/2)σz

with ∆ = ωq − ωr . We’ll assume weak coupling g � ∆.

I Weak coupling → photon not absorbed by “atom”.
I Note that the final term commutes with the others.
I This is the Jaynes-Cummings Hamiltonian.
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Rewrite JC Hamiltonian suggestively.

H = ~ωr (a†a + 1/2) + ~ωqσz/2 +
~g2

∆
(a†a + 1/2)σz

H = ~
(
ωr +

g2σz
∆

)
(a†a + 1/2) + ~ωqσz/2

so ωr → ωr ± g2/∆. Or, similarly,

H = ~ωr (a†a + 1/2) +
~
2

(
ωq + 2

~g2

∆
a†a +

g2

∆

)
σz .

This is effectively an AC Stark shift in the atom transition frequency
ωq → ωq + 2n̄g2/∆.
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Choice of “atoms” not limited to atoms.
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Probing the qubit state |n〉 by observing a
frequency shift in the cavity

Observation of |n〉 through 15 MHz dispersive frequency shift.

38 Daniel Bowring — Quantum Sensors



Measurement cartoon

Thermal background Boltzmann-suppressed via 10 mK He dilution
refrigerator, funded through Fermilab LDRD.
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Our current challenge: mitigate dark rates

I Our qubits show false positives w/ perr ∼ 0.01.
I To improve, require N-qubit concordance:
perr → (perr)

N .
I N-qubit readout is an R&D challenge we’ll tackle in

the coming years.
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Other interesting QIS work happening at
Fermilab, too.

I A. Grassellino and A.
Romanenko apply high-Q SRF
cavity technology to the
problem of qubit coherence.

I Atom interferometric probes
of spacetime curvature:
https://arxiv.org/pdf/
1610.03832.pdf.
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